AI image models are rapidly evolving, disrupting aesthetic production in many industries. However, understanding of their underlying archives, their logic of image reproduction, and their persistent biases remains limited. What kind of methods and approaches could open up these black boxes? In this paper, we provide three methodological approaches for investigating AI image models and apply them to Stable Diffusion as a case study. Unmaking the ecosystem analyzes the values, structures, and incentives surrounding the model's production. Unmaking the data analyzes the images and text the model draws upon, with their attendant particularities and biases. Unmaking the output analyzes the model's generative results, revealing its logics through prompting, reflection, and iteration. Each mode of inquiry highlights particular ways in which the image model captures, "understands," and recreates the world. This accessible framework supports the work of critically investigating generative AI image models and paves the way for more socially and politically attuned analyses of their impacts in the world.
翻译:暂无翻译