This paper studies a model learning and online planning approach towards building flexible and general robots. Specifically, we investigate how to exploit the locality and sparsity structures in the underlying environmental transition model to improve model generalization, data-efficiency, and runtime-efficiency. We present a new domain definition language, named PDSketch. It allows users to flexibly define high-level structures in the transition models, such as object and feature dependencies, in a way similar to how programmers use TensorFlow or PyTorch to specify kernel sizes and hidden dimensions of a convolutional neural network. The details of the transition model will be filled in by trainable neural networks. Based on the defined structures and learned parameters, PDSketch automatically generates domain-independent planning heuristics without additional training. The derived heuristics accelerate the performance-time planning for novel goals.
翻译:本文研究建立灵活和普通机器人的示范学习和在线规划方法。具体地说,我们调查如何利用基本环境过渡模型中的地点和广度结构来改进模型的概括化、数据效率和运行时间效率。我们提出了一个新的域定义语言,名为PDSketch。它使用户能够灵活地界定过渡模型中的高级结构,如对象和特征依赖性,其方式类似于程序员如何使用TensorFlow或PyTorch来指定进化神经网络的内核大小和隐藏维度。过渡模型的细节将由可训练的神经网络填充。根据界定的结构和所学参数,PDSketch在没有额外培训的情况下自动生成自领域规划的超自然理论。由此产生的超自然学加快了新目标的性能-时间规划。</s>