Recent years have witnessed the deployment of adversarial attacks to evaluate the robustness of Neural Networks. Past work in this field has relied on traditional optimization algorithms that ignore the inherent structure of the problem and data, or generative methods that rely purely on learning and often fail to generate adversarial examples where they are hard to find. To alleviate these deficiencies, we propose a novel attack based on a graph neural network (GNN) that takes advantage of the strengths of both approaches; we call it AdvGNN. Our GNN architecture closely resembles the network we wish to attack. During inference, we perform forward-backward passes through the GNN layers to guide an iterative procedure towards adversarial examples. During training, its parameters are estimated via a loss function that encourages the efficient computation of adversarial examples over a time horizon. We show that our method beats state-of-the-art adversarial attacks, including PGD-attack, MI-FGSM, and Carlini and Wagner attack, reducing the time required to generate adversarial examples with small perturbation norms by over 65\%. Moreover, AdvGNN achieves good generalization performance on unseen networks. Finally, we provide a new challenging dataset specifically designed to allow for a more illustrative comparison of adversarial attacks.


翻译:近些年来,我们目睹了对立攻击的部署,以评价神经网络的强健性。过去在这一领域的工作依赖传统的优化算法,这种算法忽视了问题和数据的内在结构,或纯粹依赖学习的基因化方法,往往没有产生难以找到的对抗性例子。为了减轻这些缺陷,我们提议以图表神经网络(GNN)为基础,进行新的攻击,利用两种方法的优势;我们称之为AdvGNNN。我们的GNN结构与我们希望攻击的网络非常相似。在推论期间,我们通过GNN层向前走过后路,以引导一种迭接程序来树立对抗性例子。在培训期间,通过一种鼓励在时间跨度上有效计算对抗性例子的损失函数来估计其参数。我们表明,我们的方法战胜了最先进的对立性攻击,包括PGD-攻击、MI-FGMSM、Carlini和Wagner攻击,从而缩短了产生具有小的对立性攻击规范所需的时间。此外,AdvGNNNN能够具体地对新的对抗性攻击进行具有挑战性的数据比较。最后,我们为对抗性攻击提供了对立性攻击提供了对立性攻击的比较。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
先睹为快:神经网络顶会ICLR 2019论文热点分析
深度学习与NLP
43+阅读 · 2018年12月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
先睹为快:神经网络顶会ICLR 2019论文热点分析
深度学习与NLP
43+阅读 · 2018年12月22日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员