This study proposes a novel approach that combines theory and data-driven choice models using Artificial Neural Networks (ANNs). In particular, we use continuous vector representations, called embeddings, for encoding categorical or discrete explanatory variables with a special focus on interpretability and model transparency. Although embedding representations within the logit framework have been conceptualized by Pereira (2019), their dimensions do not have an absolute definitive meaning, hence offering limited behavioral insights in this earlier work. The novelty of our work lies in enforcing interpretability to the embedding vectors by formally associating each of their dimensions to a choice alternative. Thus, our approach brings benefits much beyond a simple parsimonious representation improvement over dummy encoding, as it provides behaviorally meaningful outputs that can be used in travel demand analysis and policy decisions. Additionally, in contrast to previously suggested ANN-based Discrete Choice Models (DCMs) that either sacrifice interpretability for performance or are only partially interpretable, our models preserve interpretability of the utility coefficients for all the input variables despite being based on ANN principles. The proposed models were tested on two real world datasets and evaluated against benchmark and baseline models that use dummy-encoding. The results of the experiments indicate that our models deliver state-of-the-art predictive performance, outperforming existing ANN-based models while drastically reducing the number of required network parameters.


翻译:这项研究提出了一种将理论和数据驱动的选择模型结合使用人工神经网络(人工神经网络)的新颖方法。特别是,我们使用连续的矢量表示法,称为嵌入式,用于编码绝对或离散的解释变量,特别侧重于解释性和模式透明度。虽然佩雷拉(2019年)已经将代表性嵌入逻辑框架的概念化,但其层面并没有绝对明确的含义,因此在先前的工作中提供了有限的行为洞察力。我们的工作新颖之处在于通过正式将每个层面与选择选项联系起来,使嵌入矢量的矢量解释性解释性。因此,我们的方法带来的好处远远不止于简单的微调代表性改进,而不是假编码,因为它提供了可用于旅行需求分析和政策决策的具有行为意义的产出。此外,与以前提出的基于ANNE的不精确选择模型(DCMs)相比,这些模型不是为业绩牺牲解释性或只是部分解释性,我们的模型保存了所有输入变量的实用系数的可解释性系数,尽管基于ANNE原则。因此,我们的拟议模型在两个真实的世界数据模型上进行了测试,同时根据一个基本的预测性预测性模型对交付结果进行了评估,而使用了一种基本的模型。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
12+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
7+阅读 · 2021年10月12日
Arxiv
12+阅读 · 2021年5月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
17+阅读 · 2019年3月28日
Top
微信扫码咨询专知VIP会员