We consider solving a generalized Allen-Cahn equation coupled with a passive convection for a given incompressible velocity field. The numerical scheme consists of the first order accurate stabilized implicit explicit time discretization and a fourth order accurate finite difference scheme, which is obtained from the finite difference formulation of the $Q^2$ spectral element method. We prove that the discrete maximum principle holds under suitable mesh size and time step constraints. The same result also applies to construct a bound-preserving scheme for any passive convection with an incompressible velocity field.


翻译:我们考虑解决一个普遍的艾伦-卡恩方程式,同时对特定不可压缩速度场进行被动对流。数字法包括第一级准确稳定、隐含明确时间分解和第四级准确有限差异法,这是从$$2$的光谱元件法的有限差异公式中获得的。我们证明离散最大原则在适当的网格大小和时间步骤限制下存在。同样的结果也适用于为任何带有不可压缩速度场的被动对流构建一个约束性保留方案。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年10月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年4月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
18+阅读 · 2020年10月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员