In this paper, we propose a novel methodology for better performing uncertainty and sensitivity analysis for complex mathematical models under constraints and/or with dependent input variables, including correlated variables. Our approach allows for assessing the single, overall and interactions effects of any subset of input variables, that account for the dependencies structures inferred by the constraints. Using the variance as importance measure among others, we define the main-effect and total sensitivity indices of input(s) with the former index less than the latter. We also derive the consistent estimators and asymptotic distributions of such indices by distinguishing the case of the multivariate and/or functional outputs, including spatio-temporal models and dynamic models.
翻译:在本文中,我们提出了一种新方法,以便更好地对受制约和(或)依赖性投入变量,包括相关变量的复杂数学模型进行不确定性和敏感性分析,以更好地进行不确定性和敏感性分析,我们的方法是评估任何一组投入变量的单一、总体和互动影响,这些变量反映了这些制约因素所推断的依赖性结构。我们利用差异作为衡量重要性的尺度,确定投入的主要效应和总体敏感性指数,而前一个指数比后者要低。我们还通过区分多变量和(或)功能性产出,包括时空模型和动态模型,得出这些指数的一致估计值和零星分布。