In the present paper we prove a new theorem, resulting in an exact updating formula for linear regression model residuals to calculate the segmented cross-validation residuals for any choice of cross-validation strategy without model refitting. The required matrix inversions are limited by the cross-validation segment sizes and can be executed with high efficiency in parallel. The well-known formula for leave-one-out cross-validation follows as a special case of our theorem. In situations where the cross-validation segments consist of small groups of repeated measurements, we suggest a heuristic strategy for fast serial approximations of the cross-validated residuals and associated PRESS statistic. We also suggest strategies for quick estimation of the exact minimum PRESS value and full PRESS function over a selected interval of regularisation values. The computational effectiveness of the parameter selection for Ridge-/Tikhonov regression modelling resulting from our theoretical findings and heuristic arguments is demonstrated for several practical applications.
翻译:在本文中,我们证明了一个新的理论,从而产生了一个精确更新的线性回归模型残留物公式,用以计算为任何选择的交叉验证战略选择而使用的截断交叉验证残余物,而不进行模型的重新校正。所需的矩阵倒置受交叉验证区块大小的限制,可以同时以高效率执行。众所周知的请假一出交叉验证公式是作为我们理论理论的特例。在交叉验证部分由小组重复测量组成的情况下,我们建议了交叉验证残余物和相关的PRESS统计的快速序列近似法。我们还提出了在选定的周期内快速估计准确的最低PRESS值和全面PIS功能的战略。根据我们的理论调查结果和超理论论点为Ridge-Tikhoonov回归模型的参数选择的计算效力为若干实际应用提供了证明。