We study approximation by arbitrary linear combinations of $n$ translates of a single function of periodic functions. We construct some linear methods of this approximation for univariate functions in the class induced by the convolution with a single function, and prove upper bounds of the $L^p$-approximation convergence rate by these methods, when $n \to \infty$, for $1 \leq p \leq \infty$. We also generalize these results to classes of multivariate functions defined the convolution with the tensor product of a single function. In the case $p=2$, for this class, we also prove a lower bound of the quantity characterizing best approximation of by arbitrary linear combinations of $n$ translates of arbitrary function.


翻译:我们用任意的线性组合来研究周期函数单一函数的近似值,即一美元,我们研究周期函数的单一函数的任意线性组合。我们为一个函数的组合引发的类别中的单项函数构建了某种近似值的线性方法,并用这些方法证明美元到美元,即美元到美元时的美元接近率的上限值。我们还将这些结果推广到多种函数的类别中,这些函数定义了与单一函数的发声产物的相交。在这样的例子中,美元=2美元,对于这一类别,我们也证明以任意函数的美元任意线性组合为最佳近似值的上限值较低。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
领域知识图谱研究综述
专知会员服务
142+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
领域知识图谱研究综述
专知会员服务
142+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员