Divergence-free (div-free) and curl-free vector fields are pervasive in many areas of science and engineering, from fluid dynamics to electromagnetism. A common problem that arises in applications is that of constructing smooth approximants to these vector fields and/or their potentials based only on discrete samples. Additionally, it is often necessary that the vector approximants preserve the div-free or curl-free properties of the field to maintain certain physical constraints. Div/curl-free radial basis functions (RBFs) are a particularly good choice for this application as they are meshfree and analytically satisfy the div-free or curl-free property. However, this method can be computationally expensive due to its global nature. In this paper, we develop a technique for bypassing this issue that combines div/curl-free RBFs in a partition of unity framework, where one solves for local approximants over subsets of the global samples and then blends them together to form a div-free or curl-free global approximant. The method is applicable to div/curl-free vector fields in $\R^2$ and tangential fields on two-dimensional surfaces, such as the sphere, and the curl-free method can be generalized to vector fields in $\R^d$. The method also produces an approximant for the scalar potential of the underlying sampled field. We present error estimates and demonstrate the effectiveness of the method on several test problems.


翻译:在许多科学和工程领域,从流体动态到电磁学,无异(div-free)和无curl-form-formal 矢量字段非常普遍。应用中常见的问题在于将这些顺畅的近似物构建到这些矢量字段和(或)其仅以离散样本为基础的潜能。此外,矢量近似方通常必须维护字段的无divers-free(d-div-free)或无curl-furel-formal 特性以保持某些物理限制。Div/curl-form-form(RBFs) 函数是这一应用程序的一个特别好的选择,因为它们是无异或无正弦-cur-al-al-lal-frol-formal-formal-formal-formal-formal-free-formal-free-ral-free-ral-free-rmal-lex-lex-rl-rlent-rx-r-rx-rx-rx-rxxxxx-l-l-fol-l) fielent-st filoom-st-lation2 fielm-st-st-mode-molog-mod-d-d-d-d-mod-mode-mod-l-d-d-lation-lation-lation-d-d-d-lation-lation-lation-lation-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-d-mod-mod-mod-d-d-d-d-d-d-d-ld-d-d-d-d-d-d-d-d-d-d-ld-d-d-d-d-d-d-mod-l-d-l-

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年3月29日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
23+阅读 · 2020年4月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年3月29日
Top
微信扫码咨询专知VIP会员