This note investigates functions from $\mathbb{R}^d$ to $\mathbb{R} \cup \{\pm \infty\}$ that satisfy axioms of linearity wherever allowed by extended-value arithmetic. They have a nontrivial structure defined inductively on $d$, and unlike finite linear functions, they require $\Omega(d^2)$ parameters to uniquely identify. In particular they can capture vertical tangent planes to epigraphs: a function (never $-\infty$) is convex if and only if it has an extended-valued subgradient at every point in its effective domain, if and only if it is the supremum of a family of "affine extended" functions. These results are applied to the well-known characterization of proper scoring rules, for the finite-dimensional case: it is carefully and rigorously extended here to a more constructive form. In particular it is investigated when proper scoring rules can be constructed from a given convex function.
翻译:本说明调查从 $mathbb{R ⁇ d$ 到 $mathbb{R}\ cup {pm\ infty} 的函数, 只要有扩展值算术允许, 就能满足线性等离子的轴值 。 它们有一个非三元结构, 以美元为基值, 不同于有限的线性函数, 它们需要 $\ Omega( d ⁇ 2) 参数才能独特识别。 特别是它们可以将垂直正切的平面捕获到缩写上: 一个函数( $- inty$ 绝不) 只有在它有效域中每个点都具有扩展值子梯度, 只要它是“ fiffine 扩展” 函数组的顶尖值, 并且只有它是该函数的顶尖值。 这些结果适用于已知的正确评分规则的定性, 用于限定维度案例: 它在这里被仔细和严格扩展为更具建设性的形式。 特别是当能够根据给定的 convex 函数构建正确的评分则时, 才会被调查 。