Recently, some studies on the fair allocation of indivisible goods notice a connection between a purely combinatorial problem called the Rainbow Cycle problem and a notion of fairness known as EFX: assuming that the rainbow cycle number for parameter $d$ (i.e. $R(d)$) is $O(d^\beta \log^\gamma d)$, we can find a $(1-\epsilon)$-EFX allocation with $O_{\epsilon}(n^{\frac{\beta}{\beta+1}}\log^{\frac{\gamma}{\beta +1}} n)$ number of discarded goods [7]. The best upper bound on $R(d)$ improved in series of works to $O(d^4)$ [7], $O(d^{2+o(1)})$ [2], and finally to $O(d^2)$ [1]. Also, via a simple observation, we have $R(d) \in \Omega(d)$ [7]. In this paper, we almost close the gap between the upper bound and the lower bound and show that $R(d) \in O(d \log d)$. This in turn proves the existence of $(1-\epsilon)$-EFX allocation with $\widetilde{O}_{\epsilon}(\sqrt n)$ number of discarded goods.
翻译:最近,一些关于公平分配不可分割货物的研究注意到,纯粹组合问题(即彩虹周期问题)与所谓的公平概念(即EFX)之间的联系:假设参数$(即(d)美元)的彩虹周期号是O美元(即,美元(d)(d)(d)(d)(d)(d)(d)(美元),我们能找到美元(d)(美元)-EFX(美元),而美元(oepsilon)](n)frac $(d)(d)(d)(d)(7)美元)。在本文中,我们几乎缩小了被丢弃货物数量[7]的美元(d)(d)(d)(d)(d)(d)(美元)之间的差额。在工程系列改进后的美元(d)(d)(d)(d)(d)(r)(d)(r)(r)(d)(r)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(r)(r)(r)(x)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(x)(x)(x)(x)(x)(x)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d))))))))的美元)的美元)的美元)的確)的確。