Generalized Additive Models (GAMs) have quickly become the leading choice for fully-interpretable machine learning. However, unlike uninterpretable methods such as DNNs, they lack expressive power and easy scalability, and are hence not a feasible alternative for real-world tasks. We present a new class of GAMs that use tensor rank decompositions of polynomials to learn powerful, $\textit{fully-interpretable}$ models. Our approach, titled Scalable Polynomial Additive Models (SPAM) is effortlessly scalable and models $\textit{all}$ higher-order feature interactions without a combinatorial parameter explosion. SPAM outperforms all current interpretable approaches, and matches DNN/XGBoost performance on a series of real-world benchmarks with up to hundreds of thousands of features. We demonstrate by human subject evaluations that SPAMs are demonstrably more interpretable in practice, and are hence an effortless replacement for DNNs for creating interpretable and high-performance systems suitable for large-scale machine learning.
翻译:通用Additive 模型(GAMs) 很快成为完全解释机器学习的主要选择。 然而,与DNNs等无法解释的方法不同,它们缺乏表达力和易于缩放,因此无法成为现实世界任务的一种可行替代方法。 我们展示了一种新的GAMs, 使用多语种高等级分解模型来学习强大的, $\ textit{ 完全解释} 模型。 我们的名为Scallable 多边补充模型(SPAM) 的方法是不易变缩的, 高阶模型的特征互动模式是 $\ textit{all} 美元, 而不是组合参数爆炸。 SPAM 超越了当前所有可解释的方法, 匹配了DNN/XGBost在一系列真实世界基准上的性能, 多达数十万个特征。 我们通过人类专题评估表明, SPAMs在实际中可以被证明更明显地解释, 因此DNMs在创建适合大规模机器学习的可解释和高性系统方面是不费力的替代。