The detection of abusive language remains a long-standing challenge with the extensive use of social networks. The detection task of abusive language suffers from limited accuracy. We argue that the existing detection methods utilize the fine-tuning technique of the pre-trained language models (PLMs) to handle downstream tasks. Hence, these methods fail to stimulate the general knowledge of the PLMs. To address the problem, we propose a novel Deep Prompt Multi-task Network (DPMN) for abuse language detection. Specifically, DPMN first attempts to design two forms of deep prompt tuning and light prompt tuning for the PLMs. The effects of different prompt lengths, tuning strategies, and prompt initialization methods on detecting abusive language are studied. In addition, we propose a Task Head based on Bi-LSTM and FFN, which can be used as a short text classifier. Eventually, DPMN utilizes multi-task learning to improve detection metrics further. The multi-task network has the function of transferring effective knowledge. The proposed DPMN is evaluated against eight typical methods on three public datasets: OLID, SOLID, and AbuseAnalyzer. The experimental results show that our DPMN outperforms the state-of-the-art methods.
翻译:暂无翻译