We explore new interactions between finite model theory and a number of classical streams of universal algebra and semigroup theory. A key result is an example of a finite algebra whose variety is not finitely axiomatisable in first order logic, but which has first order definable finite membership problem. This algebra witnesses the simultaneous failure of the {\L}os-Tarski Theorem, the SP-preservation theorem and Birkhoff's HSP-preservation theorem at the finite level as well as providing a negative solution to a first order formulation of the long-standing Eilenberg Sch\"utzenberger problem. The example also shows that a pseudovariety without any finite pseudo-identity basis may be finitely axiomatisable in first order logic. Other results include the undecidability of deciding first order definability of the pseudovariety of a finite algebra and a mapping from any fixed template constraint satisfaction problem to a first order equivalent variety membership problem, thereby providing examples of variety membership problems complete in each of the classes $\texttt{L}$, $\texttt{NL}$, $\texttt{Mod}_p(\texttt{L})$, $\texttt{P}$, and infinitely many others (depending on complexity-theoretic assumptions).
翻译:我们探索了有限模型理论和一些通用代数和半组理论经典流之间的新互动。 一个关键结果是一个有限代数的范例,其多样性在一阶逻辑中并非有一定的偏差,但在一阶逻辑中具有一阶可定义的有限会籍问题。 这个代数见证了 {L}os-Tarski 理论、 SP- presferve theorem 和 Birkhoff 的HSP- preserve theorem 在有限水平上将满意度问题限制在第一个等同的成员问题,并为长期存在的Eilenberg Sch\"utzenberger问题的第一个顺序配制提供了否定的解决方案。 这个例子还表明,没有任何限定伪身份基础的假名可能具有一定的偏差性。 其它结果包括确定有限代数的假象的首序解性是不可减损的,并且从任何固定模板的图解都将满意度问题限制在第一个等同的会籍问题中,从而提供了在美元/美元、美元/美元/美元/美元/美元/ 方程/美元/美元/ 方程/ 方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方程/方