The widely-used Extended Kalman Filter (EKF) provides a straightforward recipe to estimate the mean and covariance of the state given all past measurements in a causal and recursive fashion. For a wide variety of applications, the EKF is known to produce accurate estimates of the mean and typically inaccurate estimates of the covariance. For applications in visual inertial localization, we show that inaccuracies in the covariance estimates are \emph{systematic}, i.e. it is possible to learn a nonlinear map from the empirical ground truth to the estimated one. This is demonstrated on both a standard EKF in simulation and a Visual Inertial Odometry system on real-world data.
翻译:广泛使用的扩展 Kalman 过滤器( EKF) 提供了一种直截了当的方法,用因果关系和递归性的方式估计过去所有测量结果所显示的状态的平均值和共差值。 对于各种各样的应用, EKF 已知对共差值的平均值和一般不准确的估计得出准确的估计数。 对于视觉惯性定位的应用,我们显示共差估计值中的不准确性是 \ emph{ systemstic}, 也就是说, 有可能从实证地面事实学到估计事实学的非线性地图。 这在模拟中的标准 EKF 和真实世界数据上可见的不精确测量系统都证明了这一点。