Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network (KGAN), which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multiview representations in a local-to-global manner. Extensive experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance.
翻译:以外观为基础的情绪分析(ABSA)是一项精细的情感分析任务。为了更好地理解长期复杂的刑期,并获得准确的特定方面信息,通常需要语言和普通知识。然而,大多数方法都采用复杂和低效率的方法来吸收外部知识,例如直接搜索图形节点。此外,外部知识和语言信息之间的互补性尚未进行彻底研究。为此,我们提议建立一个知识图扩大网络(KGAN),目的是以明确的合成和背景信息有效地纳入外部知识。特别是,KGAN从多种不同的角度,即背景、综合税和知识的角度,来捕捉情绪特征的表现形式。首先,KGAN学习背景和综合表达方式,同时全面提取语义特征。随后,KGAN将知识图纳入嵌入空间,在此基础上,通过关注机制进一步获取具体方面的知识表述。最后,我们建议一个等级组合模块,以本地到全球的方式,即以背景、综合税和知识为基础,补充这些多视角的表达方式。首先,KGAN学习了背景和合成GA之前三个大众的韩国标准。然后,用KAAN前的成绩测试,展示了我们GA-GARO-BA的全局的成绩。