We present an $O(\log^3\log n)$-round distributed algorithm for the $(\Delta+1)$-coloring problem, where each node broadcasts only one $O(\log n)$-bit message per round to its neighbors. Previously, the best such broadcast-based algorithm required $O(\log n)$ rounds. If $\Delta \in \Omega(\log^{3} n)$, our algorithm runs in $O(\log^* n)$ rounds. Our algorithm's round complexity matches state-of-the-art in the much more powerful CONGEST model [Halld\'orsson et al., STOC'21 & PODC'22], where each node sends one different message to each of its neighbors, thus sending up to $\Theta(n\log n)$ bits per round. This is the best complexity known, even if message sizes are unbounded. Our algorithm is simple enough to be implemented in even weaker models: we can achieve the same $O(\log^3\log n)$ round complexity if each node reads its received messages in a streaming fashion, using only $O(\log^3 n)$-bit memory. Therefore, we hope that our algorithm opens the road for adopting the recent exciting progress on sublogarithmic-time distributed $(\Delta+1)$-coloring algorithms in a wider range of (theoretical or practical) settings.


翻译:我们提出了一个 $O(\log^3\log n)$ 轮的分布式算法,用于 $(\Delta+1)$-着色问题,其中每个节点每轮仅向其邻居广播一个 $O(\log n)$ 位的消息。此前,最好的基于广播的算法需要 $O(\log n)$ 轮。如果 $\Delta \in \Omega(\log^{3} n)$,我们的算法可以在 $O(\log^* n)$ 轮内运行。该算法的轮复杂度与在更强大的 CONGEST 模型 [Halld\'orsson et al., STOC'21 & PODC'22] 中的最新状态相匹配,其中每个节点向每个邻居发送不同的消息,因此每轮发送最多 $\Theta(n\log n)$ 位。即使消息大小不受限制,这仍是已知的最优复杂度。我们的算法足够简单,可以在更弱的模型中实现:如果每个节点以流式读取方式读取其接收到的消息,并使用仅 $O(\log^3 n)$ 位的存储器,则可以实现相同的 $O(\log^3\log n)$ 轮复杂度。因此,我们希望我们的算法能够以更广泛的(理论或实际)设置中采用子对数时间分布式 $(\Delta+1)$-着色算法的最新进展。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
专知会员服务
56+阅读 · 2021年1月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
一些关于随机矩阵的算法
PaperWeekly
1+阅读 · 2022年7月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月2日
VIP会员
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
一些关于随机矩阵的算法
PaperWeekly
1+阅读 · 2022年7月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员