Inferring the position of objects and their rigid transformations is still an open problem in visual scene understanding. Here we propose a neuromorphic solution that utilizes an efficient factorization network which is based on three key concepts: (1) a computational framework based on Vector Symbolic Architectures (VSA) with complex-valued vectors; (2) the design of Hierarchical Resonator Networks (HRN) to deal with the non-commutative nature of translation and rotation in visual scenes, when both are used in combination; (3) the design of a multi-compartment spiking phasor neuron model for implementing complex-valued vector binding on neuromorphic hardware. The VSA framework uses vector binding operations to produce generative image models in which binding acts as the equivariant operation for geometric transformations. A scene can therefore be described as a sum of vector products, which in turn can be efficiently factorized by a resonator network to infer objects and their poses. The HRN enables the definition of a partitioned architecture in which vector binding is equivariant for horizontal and vertical translation within one partition, and for rotation and scaling within the other partition. The spiking neuron model allows to map the resonator network onto efficient and low-power neuromorphic hardware. In this work, we demonstrate our approach using synthetic scenes composed of simple 2D shapes undergoing rigid geometric transformations and color changes. A companion paper demonstrates this approach in real-world application scenarios for machine vision and robotics.
翻译:在视觉场景理解中,推断物体的位置及其僵硬变异仍然是一个尚未解决的问题。在这里,我们提出一个神经形态解决方案,利用基于三个关键概念的有效乘数化网络,即:(1)基于矢量光学结构的计算框架(VSA),具有复杂价值的矢量变化源;(2)高压共振网络的设计,以处理视觉场景中翻译和旋转的非互换性质,当两者同时使用时;(3)设计一个用于神经形态硬件中实施复杂值矢量绑定的复合合成散射神经模型。VSA框架使用矢量绑定操作来生成基因化图像模型,作为具有复合值矢量变异作用的矢量结构;(2)因此,场面的设计可以被描述为矢量产品的总和,这反过来又可以通过感应网络来有效计算对象对象及其配置;(3) HRN方法能够定义一个分隔式结构,在这个结构中,矢量绑定矢量成一个实际分区和垂直的矢量矢量矢量矢量矢量矢量矢量矢量的矢量转换,在一个真实分区内进行横向和垂直矢量矢量矢量矢量矢量的矢量性矢量变化,以及用于神经网络的旋转结构变变换和缩成另一个阵列。我们的硬质变的轨道阵列的阵列,将这个阵列的阵列到这个阵列的阵列的阵列到这个阵列到这个阵列到这个阵列到这个阵列到这个硬度变到这个阵列到这个阵列到另一个的阵列。