Approximate Nearest Neighbor (ANN) search is a fundamental technique for (e.g.,) the deployment of recommender systems. Recent studies bring proximity graph-based methods into practitioners' attention -- proximity graph-based methods outperform other solutions such as quantization, hashing, and tree-based ANN algorithm families. In current recommendation systems, data point insertions, deletions, and queries are streamed into the system in an online fashion as users and items change dynamically. As proximity graphs are constructed incrementally by inserting data points as new vertices into the graph, online insertions and queries are well-supported in proximity graph. However, a data point deletion incurs removing a vertex from the proximity graph index, while no proper graph index updating mechanisms are discussed in previous studies. To tackle the challenge, we propose an incremental proximity graph maintenance (IPGM) algorithm for online ANN. IPGM supports both vertex deletion and insertion on proximity graphs. Given a vertex deletion request, we thoroughly investigate solutions to update the connections of the vertex. The proposed updating scheme eliminates the performance drop in online ANN methods on proximity graphs, making the algorithm suitable for practical systems.
翻译:近距离邻里博尔(ANN)搜索是使用推荐者系统(例如,ANN)的一种基本技术。最近的研究将近距离图形方法引向实践者注意 -- -- 近距离图形方法优于其他解决方案,如量化、散射和基于树的ANN算法家庭。在目前的推荐系统中,随着用户和项目的动态变化,数据点插入、删除和查询以在线方式流入系统。由于近距离图是通过在图表中插入数据点作为新的顶点而逐步构建的,在线插入和查询在近距离图中得到了很好的支持。然而,数据点的删除需要从近距离图索引索引中删除一个顶点,而以前的研究没有讨论适当的图表索引更新机制。为了应对这一挑战,我们建议为在线ANNEN(AN)系统增加一个近距离图维护(IPGM)算法。IPGMGM(IPGM)既支持顶点删除,又支持在近距离图上插入。根据垂直删除请求,我们彻底地调查更新顶点连接连接的方法。拟议的更新计划将消除离离线系统的实际性数据系统。