Detection of anomalies among a large number of processes is a fundamental task that has been studied in multiple research areas, with diverse applications spanning from spectrum access to cyber-security. Anomalous events are characterized by deviations in data distributions, and thus can be inferred from noisy observations based on statistical methods. In some scenarios, one can often obtain noisy observations aggregated from a chosen subset of processes. Such hierarchical search can further minimize the sample complexity while retaining accuracy. An anomaly search strategy should thus be designed based on multiple requirements, such as maximizing the detection accuracy; efficiency, be efficient in terms of sample complexity; and be able to cope with statistical models that are known only up to some missing parameters (i.e., composite hypotheses). In this paper, we consider anomaly detection with observations taken from a chosen subset of processes that conforms to a predetermined tree structure with partially known statistical model. We propose Hierarchical Dynamic Search (HDS), a sequential search strategy that uses two variations of the Generalized Log Likelihood Ratio (GLLR) statistic, and can be used for detection of multiple anomalies. HDS is shown to be order-optimal in terms of the size of the search space, and asymptotically optimal in terms of detection accuracy. An explicit upper bound on the error probability is established for the finite sample regime. In addition to extensive experiments on synthetic datasets, experiments have been conducted on the DARPA intrusion detection dataset, showing that HDS is superior to existing methods.


翻译:在许多研究领域,从频谱存取到网络安全等各种应用范围各不相同,对大量流程中异常现象的检测是一项基本任务,已经在许多研究领域进行了研究,从频谱存取到网络安全等不同应用领域,发现异常现象是一项基本任务;异常事件的特点是数据分布的偏差,因此可以根据根据统计方法进行的杂乱观察推断出。在有些情况下,人们往往可以从所选择的一组流程中获得杂乱的观测。这种分级搜索可以进一步减少抽样复杂性,同时保留准确性。异常搜索战略应当基于多种要求来设计,例如最大限度地提高探测准确性;效率,抽样复杂性方面的效率;以及能够应对只有某些缺失的参数(即综合假假设)才知道的统计模型。在本文件中,我们考虑通过从符合部分已知统计模式的预定树结构的选定流程中进行观测,来检测异常现象。 我们提议采用分级动态搜索(HDS)战略,使用通用日志相似比比(GLLR)的两种变化,并可用于检测多种异常现象。HDDDS显示在最精确性测算方法上的精确性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员