In this work, we propose a framework to learn a local regularization model for solving general image restoration problems. This regularizer is defined with a fully convolutional neural network that sees the image through a receptive field corresponding to small image patches. The regularizer is then learned as a critic between unpaired distributions of clean and degraded patches using a Wasserstein generative adversarial networks based energy. This yields a regularization function that can be incorporated in any image restoration problem. The efficiency of the framework is finally shown on denoising and deblurring applications.
翻译:在这项工作中,我们提出了一个学习本地正规化模式以解决一般图像恢复问题的框架。 常规化器由完全进化的神经网络来定义, 通过一个与小图像补丁相对应的可接收场来观察图像。 然后, 常规化器作为批评者在使用瓦森斯坦的基因对抗网络能量的清洁和退化补丁的未受控制分布之间学习。 这产生一种可被纳入任何图像恢复问题的正规化功能。 框架的效率最终表现为对应用程序的分解和分解。