The capabilities of natural neural systems have inspired new generations of machine learning algorithms as well as neuromorphic very large-scale integrated (VLSI) circuits capable of fast, low-power information processing. However, it has been argued that most modern machine learning algorithms are not neurophysiologically plausible. In particular, the workhorse of modern deep learning, the backpropagation algorithm, has proven difficult to translate to neuromorphic hardware. In this study, we present a neuromorphic, spiking backpropagation algorithm based on synfire-gated dynamical information coordination and processing, implemented on Intel's Loihi neuromorphic research processor. We demonstrate a proof-of-principle three-layer circuit that learns to classify digits from the MNIST dataset. To our knowledge, this is the first work to show a Spiking Neural Network (SNN) implementation of the backpropagation algorithm that is fully on-chip, without a computer in the loop. It is competitive in accuracy with off-chip trained SNNs and achieves an energy-delay product suitable for edge computing. This implementation shows a path for using in-memory, massively parallel neuromorphic processors for low-power, low-latency implementation of modern deep learning applications.


翻译:自然神经系统的能力激励了新一代的机器学习算法以及能够快速、低功率信息处理的大规模神经形态集成集成(VLSI)电路。然而,有人认为,大多数现代机器学习算法在神经生理学上并不合理。特别是现代深层学习的工马,即回向回向转换算法,证明难以转换成神经形态硬件。在本研究中,我们提出了一个神经形态演算法,这种算法以同步式带火的动态信息协调和处理为基础,在Intel's Loihi神经形态研究处理器上实施。我们展示了一条三层原理的校准电路,它学会将数字从MNISIS数据集中分类。对于我们的知识来说,这是第一次展示Spik Nealal 网络(SNN) 完全在芯片上实施反向反向反向演算法,而没有在循环中安装计算机。它具有竞争力,它与经过离板训练的SNNNS公司具有准确性,并且实现一种能量淡产产品,适合于进行深层次的同步计算。这个执行路径,这是使用低位态的现代神经形态的系统进行。这个执行路径,用来进行大规模的低度的系统。

0
下载
关闭预览

相关内容

反向传播一词严格来说仅指用于计算梯度的算法,而不是指如何使用梯度。但是该术语通常被宽松地指整个学习算法,包括如何使用梯度,例如通过随机梯度下降。反向传播将增量计算概括为增量规则中的增量规则,该规则是反向传播的单层版本,然后通过自动微分进行广义化,其中反向传播是反向累积(或“反向模式”)的特例。 在机器学习中,反向传播(backprop)是一种广泛用于训练前馈神经网络以进行监督学习的算法。对于其他人工神经网络(ANN)都存在反向传播的一般化–一类算法,通常称为“反向传播”。反向传播算法的工作原理是,通过链规则计算损失函数相对于每个权重的梯度,一次计算一层,从最后一层开始向后迭代,以避免链规则中中间项的冗余计算。
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
LibRec 精选:BERT原理和应用的图文教程
LibRec智能推荐
5+阅读 · 2018年12月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员