The COVID-19 pandemic has initiated an unprecedented worldwide effort to characterize its evolution through the mapping of mutations of the coronavirus SARS-CoV-2. The early identification of mutations that could confer adaptive advantages to the virus, such as higher infectivity or immune evasion, is of paramount importance. However, the large number of currently available genomes precludes the efficient use of phylogeny-based methods. Here we present CoVtRec, a fast and scalable Topological Data Analysis approach for the surveillance of emerging adaptive mutations in large genomic datasets. Our method overcomes limitations of state-of-the-art phylogeny-based approaches by quantifying the potential adaptiveness of mutations merely by their topological footprint in the genome alignment, without resorting to the reconstruction of a single optimal phylogenetic tree. Analyzing millions of SARS-CoV-2 genomes from GISAID, we find a correlation between topological signals and adaptation to the human host. By leveraging the stratification by time in sequence data, our method enables the high-resolution longitudinal analysis of topological signals of adaptation. We characterize the convergent evolution of the coronavirus throughout the whole pandemic to date, report on emerging potentially adaptive mutations, and pinpoint mutations in Variants of Concern that are likely associated with positive selection. Our approach can improve the surveillance of mutations of concern and guide experimental studies.
翻译:暂无翻译