We study matrix multiplication in the low-bandwidth model: There are $n$ computers, and we need to compute the product of two $n \times n$ matrices. Initially computer $i$ knows row $i$ of each input matrix. In one communication round each computer can send and receive one $O(\log n)$-bit message. Eventually computer $i$ has to output row $i$ of the product matrix. We seek to understand the complexity of this problem in the uniformly sparse case: each row and column of each input matrix has at most $d$ non-zeros and in the product matrix we only need to know the values of at most $d$ elements in each row or column. This is exactly the setting that we have, e.g., when we apply matrix multiplication for triangle detection in graphs of maximum degree $d$. We focus on the supported setting: the structure of the matrices is known in advance; only the numerical values of nonzero elements are unknown. There is a trivial algorithm that solves the problem in $O(d^2)$ rounds, but for a large $d$, better algorithms are known to exist; in the moderately dense regime the problem can be solved in $O(dn^{1/3})$ communication rounds, and for very large $d$, the dominant solution is the fast matrix multiplication algorithm using $O(n^{1.158})$ communication rounds (for matrix multiplication over rings). In this work we show that it is possible to overcome quadratic barrier for all values of $d$: we present an algorithm that solves the problem in $O(d^{1.907})$ rounds for rings and $O(d^{1.927})$ rounds for semirings, independent of $n$.


翻译:我们研究的是低频宽模式中的矩阵乘法: 计算机是美元, 我们需要计算两个值为美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元。 最初计算机是美元=美元=美元=每组输入矩阵中美元=美元=美元=美元=美元=美元=美元=美元。 在一个通信回合中,每个计算机可以发送和接收一个美元=美元( log n)- 位元=美元=美元。 最终计算机美元=美元=输出产品矩阵中的一行美元=美元=美元=美元=美元。 我们试图了解这个问题的复杂性。 每个输入矩阵中的每行和列的值为美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元= 数=美元=美元=美元=%=%=美元=美元=美元=美元=美元=美元=%=%= = 以正数=美元=美元=美元= 以正数=美元=xxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员