There has been increased research interest in the subfield of sparse Bayesian factor analysis with shrinkage priors, which achieve additional sparsity beyond the natural parsimonity of factor models. In this spirit, we estimate the number of common factors in the highly implemented sparse latent factor model with spike-and-slab priors on the factor loadings matrix. Our framework leads to a natural, efficient and simultaneous coupling of model estimation and selection on one hand and model identification and rank estimation (number of factors) on the other hand. More precisely, by embedding the unordered generalized lower triangular loadings representation into overfitting sparse factor modelling, we obtain posterior summaries regarding factor loadings, common factors as well as the factor dimension via postprocessing draws from our efficient and customized Markov chain Monte Carlo scheme.
翻译:研究对稀有贝叶西亚系数分析的子领域的兴趣增加了,这种分析除了自然的系数模型外,还取得了更多的宽度。本着这种精神,我们估计了高度执行的稀薄潜在系数模型的共同因素数量,在系数负荷矩阵上具有尖锐和悬浮的前缀。我们的框架导致将模型估计和选择同时自然、高效地同时结合起来,将模型的确定和估计同时结合起来,将模型的识别和估计(因素数目)同时进行。更确切地说,通过将未定序的普遍、较低的三角负荷表示纳入过低的系数模型,我们获得了关于要素负荷、共同因素以及通过后处理从我们高效和定制的马尔科夫链蒙特卡洛计划中提取的后处理要素要素要素的后端摘要。