We address the challenging problem of whole slide image (WSI) classification. WSIs have very high resolutions and usually lack localized annotations. WSI classification can be cast as a multiple instance learning (MIL) problem when only slide-level labels are available. We propose a MIL-based method for WSI classification and tumor detection that does not require localized annotations. Our method has three major components. First, we introduce a novel MIL aggregator that models the relations of the instances in a dual-stream architecture with trainable distance measurement. Second, since WSIs can produce large or unbalanced bags that hinder the training of MIL models, we propose to use self-supervised contrastive learning to extract good representations for MIL and alleviate the issue of prohibitive memory cost for large bags. Third, we adopt a pyramidal fusion mechanism for multiscale WSI features, and further improve the accuracy of classification and localization. Our model is evaluated on two representative WSI datasets. The classification accuracy of our model compares favorably to fully-supervised methods, with less than 2% accuracy gap across datasets. Our results also outperform all previous MIL-based methods. Additional benchmark results on standard MIL datasets further demonstrate the superior performance of our MIL aggregator on general MIL problems. GitHub repository: https://github.com/binli123/dsmil-wsi
翻译:我们解决了整个幻灯片图像(WSI)分类的棘手问题。 WSI的分辨率非常高,通常缺乏本地化的注释。 WSI的分类在只有幻灯片标签时可以作为一个多实例学习问题。我们建议采用基于MIL的办法来进行WSI分类和肿瘤检测,不需要本地化的注释。我们的方法有三个主要组成部分。首先,我们引入了一个新的MIL聚合器,用来模拟具有可培训距离测量的双流结构中各实例之间的关系。第二,由于WSI可以产生大型或不平衡的袋,妨碍MIL模型的培训,我们提议使用自我监督的对比学习作为多重实例学习(MIL)的问题,为MIL找到良好的表现,并减轻大型袋的令人难以接受的记忆成本问题。第三,我们采用了一个用于多尺度 WSI 特征的金字塔融合机制,并进一步提高分类和本地化的准确性。我们模型在两个具有代表性的 WSI 数据集上进行了评估。我们的模型的精确度比完全超标的方法要好,在数据集中,比2%的精确度差,我们建议使用自我监督的模型。我们的结果也超越了MIL/GIL的高级测试了我们的标准数据库中的所有结果。我们的高级标准方法。我们也超越了我们在MIL的GIL标准方法。