Wireless systems must be resilient to jamming attacks. Existing mitigation methods require knowledge of the jammer's transmit characteristics. However, this knowledge may be difficult to acquire, especially for smart jammers that attack only specific instants during transmission in order to evade mitigation. We propose a novel method that mitigates attacks by smart jammers on massive multi-user multiple-input multiple-output (MU-MIMO) basestations (BSs). Our approach builds on recent progress in joint channel estimation and data detection (JED) and exploits the fact that a jammer cannot change its subspace within a coherence interval. Our method, called MAED (short for MitigAtion, Estimation, and Detection), uses a novel problem formulation that combines jammer estimation and mitigation, channel estimation, and data detection, instead of separating these tasks. We solve the problem approximately with an efficient iterative algorithm. Our results show that MAED effectively mitigates a wide range of smart jamming attacks without having any a priori knowledge about the attack type.
翻译:无线系统必须具有抵御干扰攻击的能力。 现有的减缓方法要求了解干扰器传输特性。 但是,这种知识可能难以获得, 特别是对于智能干扰器来说, 智能干扰器在传输过程中只攻击特定瞬间以躲避减缓。 我们提出了一个新颖的方法来减轻智能干扰器对大规模多用户多输入多输出(MU-MIIMO)基站(BS)的攻击。 我们的方法基于最近在联合频道估测和数据探测(JED)方面取得的进展, 并且利用干扰器无法在一致性间隔内改变其子空间的事实。 我们的方法叫做MAED(缩略图、估计和探测), 使用一种新颖的问题配方, 将干扰估计和减缓、 频道估测和数据探测结合起来, 而不是将这些任务分开。 我们用高效的迭代算法解决了问题。 我们的结果显示, MAED在对攻击类型没有事先了解的情况下, 有效地减轻了广泛的智能干扰攻击。