In this paper, we consider a transformation of $k$ disjoint paths in a graph. For a graph and a pair of $k$ disjoint paths $\mathcal{P}$ and $\mathcal{Q}$ connecting the same set of terminal pairs, we aim to determine whether $\mathcal{P}$ can be transformed to $\mathcal{Q}$ by repeatedly replacing one path with another path so that the intermediates are also $k$ disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when $k=2$. On the other hand, we prove that, when the graph is embedded on a plane and all paths in $\mathcal{P}$ and $\mathcal{Q}$ connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint $s$-$t$ paths as a variant. We show that the disjoint $s$-$t$ paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general.
翻译:在本文中, 我们考虑在图表中转换 $k$ 脱节路径 。 对于图形和一对 $k$ 脱节路径 $\ mathcal{P} 美元和 $\ mathcal $ 美元, 连接同一组终端配对, 我们的目标是确定 $\ mathcal{P} 美元 是否可以通过反复将一条路径替换为$\ mathcal { P} 美元 来转换成 $\ mathcal $, 中间路径的重新配置也可以在多式时间里解决 。 问题被称作脱节路径重新配置 。 我们首先显示, 脱节路径即使当 $ =2 时, 共和 路径 也是完成 PSPACE 的 。 我们还考虑在平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平平平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面