项目名称: 非约束环境下的人脸图像预处理计算模型与方法研究
项目编号: No.61502444
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 其他
项目作者: 刘艳飞
作者单位: 中国科学院重庆绿色智能技术研究院
项目金额: 20万元
中文摘要: 人脸图像预处理是指将各种外界条件影响下的非标准人脸图像变换到统一的标准条件下,通常包括人脸对齐及人脸矫正,对于解决非约束环境下进行动态人脸识别所面临的人脸特征稳定性差、受各种外界条件影响大等问题具有重要意义。由于受到光照、角度、遮挡等多种因素的联合影响,现有人脸图像预处理方法对环境变化不够鲁棒。本项目将针对该问题,探索非约束环境下人脸图像预处理的理论及方法。首先针对非约束环境下人脸关键点检测的鲁棒性问题,研究基于可见感知混合部件模型的人脸关键点检测算法,为实现良好的人脸对齐奠定基础。然后,基于自适应多列深度卷积神经网络探究人脸矫正方法,实现光照、角度、遮挡等各种变化因素的联合矫正。最后在此基础上搭建人脸识别演示系统,开展实验验证,为实现实际应用环境下可用的人脸识别系统提供核心算法与技术。本项目取得的成果有利于提高人脸识别在真实应用场景中的鲁棒性,对人脸识别的实际应用起到有效的促进作用。
中文关键词: 人脸关键点检测;人脸矫正;部件模型;深度卷积神经网络
英文摘要: Face image preprocessing is to transform a non-standard face image in unconstrained environment into the one under a unified and standard condition. It usually includes face alignment and face normalization, which can help to resolve the problems of dynamic face recognition in unconstrained environment, i.e. poor stability of facial feature and large effect of various external conditions. Due to the combined effects of many factors such as illumination, pose, occlusion, etc., the robustness to environmental change of existing face image preprocessing methods is not enough. This project aims to address this problem by investigate the theory and methods of face image preprocessing in unconstrained environment. First, to address the robustness issue of facial point detection in unconstrained environment, the face point detection algorithm based on Visibility-aware Mixtures of Part Models is investigated, which lays a good foundation for the face alignment. Then, based on the Adaptive Multi-column Deep Convolutional Neural Network, we explore face normalization method to achieve the normalization of various changes jointly, such as illumination, pose, and occlusion, etc. Finally, we establish a face recognition system on the basis of the above technologies and carry out experiments verification, to provide the key technologies for the realization of face recognition systems available in actual environments. The implementation of the project will help improve the robustness of face recognition when applying in real environments, and will effectively promote the application of face recognition.
英文关键词: facial point detection;face normalization;part-based model;deep convolutional neural network