The growing adoption of mmWave frequency bands to realize the full potential of 5G, turns beamforming into a key enabler for current and next-generation wireless technologies. Many mmWave networks rely on beam selection with Grid-of-Beams (GoB) approach to handle user-beam association. In beam selection with GoB, users select the appropriate beam from a set of pre-defined beams and the overhead during the beam selection process is a common challenge in this area. In this paper, we propose an Advantage Actor Critic (A2C) learning-based framework to improve the GoB and the beam selection process, as well as optimize transmission power in a mmWave network. The proposed beam selection technique allows performance improvement while considering transmission power improves Energy Efficiency (EE) and ensures the coverage is maintained in the network. We further investigate how the proposed algorithm can be deployed in a Service Management and Orchestration (SMO) platform. Our simulations show that A2C-based joint optimization of beam selection and transmission power is more effective than using Equally Spaced Beams (ESB) and fixed power strategy, or optimization of beam selection and transmission power disjointly. Compared to the ESB and fixed transmission power strategy, the proposed approach achieves more than twice the average EE in the scenarios under test and is closer to the maximum theoretical EE.


翻译:越来越多地采用毫米Wave频带,以实现5G的全部潜力,使光束变成当前和下一代无线技术的关键促进器。许多毫米Wave网络依靠使用Beams网(GoB)的方法选择光束来处理用户-波束联系。在与GoB选择光束时,用户从一组预先定义的光束和波段选择过程中选择适当的光束,这是这方面的一个共同挑战。在本文件中,我们提议建立一个以A2C为基础的优劣动动动动感(A2C)学习基础框架,以改进GoB和Baam选择过程,以及优化毫米Wave网络的传输能力。拟议的光束选择技术可以提高性能,同时考虑传输能力提高能源效率并确保网络的覆盖面。我们进一步调查如何将拟议的算法部署在服务管理和预设(SMO)平台上。我们的模拟表明,基于A2C的联合选择和传输能力比使用NamBam选择和EVALE的最优化战略更为有效。在使用Nespace-SBeam和EOirimal 最精确的传输战略下,在更接近地实现E-ESBAirstirstal 和E-Siral 和E-Sirstimest 战略下,在更接近更接近更接近地进行最高级的传输战略。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员