项目名称: 核壳结构Ni/Si纳米墙阵列的制备、表面修饰及锂离子电池性能研究

项目编号: No.51204116

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 冶金与矿业学科

项目作者: 黄小华

作者单位: 台州学院

项目金额: 25万元

中文摘要: 为了提高锂离子电池硅负极材料的电化学性能,本项目基于Ni核Si壳的纳米墙阵列结构具有增强Si材料导电性和结构稳定性的功能,以及高分散10 nm以下Ni颗粒具有催化Si材料表面SEI膜分解的作用,对电极进行结构设计,在Ni片集流体上制备了一种核壳结构的Ni/Si纳米墙阵列,并对其进行表面高分散纳米Ni修饰。研究Ni核Si壳的纳米墙阵列结构对Si负极材料容量、循环稳定性和高倍率充放电性能的改善,研究高分散10 nm以下Ni颗粒对Si材料首次库仑效率的提升,从而全面解决锂离子电池Si负极材料实际容量不高、首次库仑效率低、循环稳定性差、高倍率充放电性能差等问题。再系统地研究材料在充放电过程中电压、电流和阻抗的变化,以及材料结构、形貌和组成的演变,得出Si负极材料电化学性能得以改善的机理。

中文关键词: 锂离子电池;硅;负极材料;核壳结构;

英文摘要: To improve the electrochemical properties such as specific capacity, initial coulombic efficiency, cycling performance and rate properties of Si anode materials of lithium ion batteries, a core-shell Ni/Si nanowall array is prepared on nickel substrate and then surface-modified by high-dispersed Ni nanoparticles less than 10 nm. The core-shell nanowall structure has the ability of enhancing the conductivity and the structural stability of Si materials. The high-dispersed Ni nanoparticles have the ability of facilitating the decomposition of SEI layer due to their high catalytic activity. The effect of core-shell nanowall array structure on the specific capacity, cycling performance and rate properties is studied. The influence of high-dispersed Ni nanoparticles on the initial coulombic efficiency is also investigated. The volt-ampere feature and the impedance characteristics are systematically analyzed. Further, the evolution of the microsturcture, morphology and components during the charge-discharge process are studied. Finally the mechanism of performance improvement is proposed.

英文关键词: Lithium ion battery;Silicon;anode;core-shell;

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
24+阅读 · 2022年4月13日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
25+阅读 · 2017年12月6日
小贴士
相关主题
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
24+阅读 · 2022年4月13日
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员