The detection of energy thefts is vital for the safety of the whole smart grid system. However, the detection alone is not enough since energy thefts can crucially affect the electricity supply leading to some blackouts. Moreover, privacy is one of the major challenges that must be preserved when dealing with clients' energy data. This is often overlooked in energy theft detection research as most current detection techniques rely on raw, unencrypted data, which may potentially expose sensitive and personal data. To solve this issue, we present a privacy-preserving energy theft detection technique with effective demand management that employs two layers of privacy protection. We explore a split learning mechanism that trains a detection model in a decentralised fashion without the need to exchange raw data. We also employ a second layer of privacy by the use of a masking scheme to mask clients' outputs in order to prevent inference attacks. A privacy-enhanced version of this mechanism also employs an additional layer of privacy protection by training a randomisation layer at the end of the client-side model. This is done to make the output as random as possible without compromising the detection performance. For the energy theft detection part, we design a multi-output machine learning model to identify energy thefts, estimate their volume, and effectively predict future demand. Finally, we use a comprehensive set of experiments to test our proposed scheme. The experimental results show that our scheme achieves high detection accuracy and greatly improves the privacy preservation degree.


翻译:能源盗窃的检测对整个智能电网系统的安全至关重要。然而,仅仅依靠检测是不够的,因为能源盗窃可能会对电力供应造成重大影响,导致一些停电。此外,隐私是处理客户能源数据时必须保护的主要挑战之一。目前的检测技术大多依赖于未加密的原始数据,可能会暴露敏感和个人数据,这在能源盗窃检测研究中经常被忽略。为了解决这个问题,我们提出了一种具有有效需求管理的隐私保护能量盗窃检测技术,采用两层隐私保护机制。我们探讨了一种分散式的分层学习机制,以训练模型,无需交换原始数据。我们还采用了第二层隐私保护,通过使用屏蔽方案来屏蔽客户的输出,以防止推断攻击。该机制的隐私增强版还通过在客户端模型末尾训练一个随机化层来提供额外的隐私保护层。这是为了使产出尽可能随机,而不影响检测性能。针对能量盗窃检测部分,我们设计了一个多输出的机器学习模型,用于识别能源盗窃、估算它们的容量和有效地预测未来需求。最后,我们使用了一套全面的实验来测试我们提出的方案。实验结果表明,我们的方案具有高的检测准确性,并极大地提高了隐私保护程度。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员