The topic diversity of open-domain videos leads to various vocabularies and linguistic expressions in describing video contents, and therefore, makes the video captioning task even more challenging. In this paper, we propose an unified caption framework, M&M TGM, which mines multimodal topics in unsupervised fashion from data and guides the caption decoder with these topics. Compared to pre-defined topics, the mined multimodal topics are more semantically and visually coherent and can reflect the topic distribution of videos better. We formulate the topic-aware caption generation as a multi-task learning problem, in which we add a parallel task, topic prediction, in addition to the caption task. For the topic prediction task, we use the mined topics as the teacher to train a student topic prediction model, which learns to predict the latent topics from multimodal contents of videos. The topic prediction provides intermediate supervision to the learning process. As for the caption task, we propose a novel topic-aware decoder to generate more accurate and detailed video descriptions with the guidance from latent topics. The entire learning procedure is end-to-end and it optimizes both tasks simultaneously. The results from extensive experiments conducted on the MSR-VTT and Youtube2Text datasets demonstrate the effectiveness of our proposed model. M&M TGM not only outperforms prior state-of-the-art methods on multiple evaluation metrics and on both benchmark datasets, but also achieves better generalization ability.


翻译:开放式视频的多样化主题导致在描述视频内容时出现各种词汇和语言表达方式,从而使视频字幕的任务更具挑战性。在本文中,我们提出一个统一的标题框架,即M &M TGM(M&M TGM),从数据中以不受监督的方式将多式专题从数据中挖掘出来,并指导标题解码器与这些专题的调码器。与预先确定的专题相比,所开采的多式联运专题在语义和视觉上更加一致,能够更好地反映视频的专题分布。我们把专题识别字幕生成作为一个多任务学习问题,除了标题任务之外,我们增加了一个平行的任务,即专题预测。对于专题预测任务,我们利用所探测的专题作为教师培训学生专题预测模型,学习从视频的多式内容中预测潜在专题。与预先界定的专题预测为学习过程提供中间监督。关于标题任务,我们提议了一个新颖的专题认知解码解码解码,用潜在主题指南制作更准确和详细的视频描述。整个学习程序是最终到最后的,而不是同时优化MVMV 和MV模式上的拟议数据模式,同时展示了我们关于MV系统的广泛实验的结果。

1
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
39+阅读 · 2021年11月11日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员