Title: Comparison between layer-to-layer network training and conventional network training using Deep Convolutional Neural Networks Abstract: Convolutional neural networks (CNNs) are widely used in various applications due to their effectiveness in extracting features from data. However, the performance of a CNN heavily depends on its architecture and training process. In this study, we propose a layer-to-layer training method and compare its performance with the conventional training method. In the layer-to-layer training approach, we treat a portion of the early layers as a student network and the later layers as a teacher network. During each training step, we incrementally train the student network to learn from the output of the teacher network, and vice versa. We evaluate this approach on VGG16, ResNext, and DenseNet networks without pre-trained ImageNet weights and a regular CNN model. Our experiments show that the layer-to-layer training method outperforms the conventional training method for both models. Specifically, we achieve higher accuracy on the test set for the VGG16, ResNext, and DeseNet networks and the CNN model using layer-to-layer training compared to the conventional training method. Overall, our study highlights the importance of layer-wise training in CNNs and suggests that layer-to-layer training can be a promising approach for improving the accuracy of CNNs.
翻译:暂无翻译