Extracting the interaction rules of biological agents from moving sequences pose challenges in various domains. Granger causality is a practical framework for analyzing the interactions from observed time-series data; however, this framework ignores the structures of the generative process in animal behaviors, which may lead to interpretational problems and sometimes erroneous assessments of causality. In this paper, we propose a new framework for learning Granger causality from multi-animal trajectories via augmented theory-based behavioral models with interpretable data-driven models. We adopt an approach for augmenting incomplete multi-agent behavioral models described by time-varying dynamical systems with neural networks. For efficient and interpretable learning, our model leverages theory-based architectures separating navigation and motion processes, and the theory-guided regularization for reliable behavioral modeling. This can provide interpretable signs of Granger-causal effects over time, i.e., when specific others cause the approach or separation. In experiments using synthetic datasets, our method achieved better performance than various baselines. We then analyzed multi-animal datasets of mice, flies, birds, and bats, which verified our method and obtained novel biological insights.
翻译:从移动序列中提取生物物剂的互动规则在不同领域构成挑战。 引因性是分析从观测到的时间序列数据中进行互动的实用框架; 然而, 这个框架忽略了动物行为中的基因化过程结构, 这可能会导致解释问题, 有时对因果关系的错误评估。 在本文中, 我们提出一个新的框架, 以便通过强化基于理论的行为模型, 加上可解释的数据驱动模型, 来从多动物轨迹中学习引因因性能。 我们采用一种方法, 用来增加由神经网络的可时间变化动态系统描述的不完整多剂行为模型。 为了高效和可解释的学习, 我们模型利用基于理论的结构, 将导航和运动过程分开, 以及理论引导的正规化, 用于可靠的行为模型。 这可以提供长期Granger- caus 效应的可解释性迹象, 也就是说, 当其他特定模型导致该方法或分离时。 在使用合成数据集的实验中, 我们的方法比各种基线的性要好。 我们随后分析了以多种动物数据为基础的数据集、 、 、 、 鸟、 和蝙蝠 和新生物洞察 。