The availability of labelled data is one of the main limitations in machine learning. We can alleviate this using weak supervision: a framework that uses expert-defined rules $\boldsymbol{\lambda}$ to estimate probabilistic labels $p(y|\boldsymbol{\lambda})$ for the entire data set. These rules, however, are dependent on what experts know about the problem, and hence may be inaccurate or may fail to capture important parts of the problem-space. To mitigate this, we propose Active WeaSuL: an approach that incorporates active learning into weak supervision. In Active WeaSuL, experts do not only define rules, but they also iteratively provide the true label for a small set of points where the weak supervision model is most likely to be mistaken, which are then used to better estimate the probabilistic labels. In this way, the weak labels provide a warm start, which active learning then improves upon. We make two contributions: 1) a modification of the weak supervision loss function, such that the expert-labelled data inform and improve the combination of weak labels; and 2) the maxKL divergence sampling strategy, which determines for which data points expert labelling is most beneficial. Our experiments show that when the budget for labelling data is limited (e.g. $\leq 60$ data points), Active WeaSuL outperforms weak supervision, active learning, and competing strategies, with only a handful of labelled data points. This makes Active WeaSuL ideal for situations where obtaining labelled data is difficult.
翻译:贴有标签的数据是机器学习的主要限制之一。 我们可以用薄弱的监管来减轻这一限制: 一个使用专家定义的规则 $\ boldsymbol_lambda}$\ boldsymbol_lambda} 来估计整个数据集的概率值 $p(y ⁇ boldsymbol_lambda}) 的框架。 然而,这些规则取决于专家对问题的了解程度,因此可能不准确,或者可能无法捕捉问题空间的重要部分。 为了缓解这一点, 我们建议 主动 WeaSuL : 一种将积极学习纳入薄弱监管中的方法。 在活跃的 WeaSuL 中, 专家不仅定义规则, 而且他们也反复为一组小点提供真实的标签, 这些点的监管模式很可能被错误, 然后用来更好地估计概率标签标签标签标签。 这样, 弱点提供了一个温暖的开端, 然后积极学习。 我们做了两个贡献:1) 弱的监管损失功能的修改, 这样专家标签的数据会告知并改进薄弱标签的标签的组合。