We analyze the extreme value dependence of independent, not necessarily identically distributed multivariate regularly varying random vectors. More specifically, we propose estimators of the spectral measure locally at some time point and of the spectral measures integrated over time. The uniform asymptotic normality of these estimators is proved under suitable nonparametric smoothness and regularity assumptions. We then use the process convergence of the integrated spectral measure to devise consistent tests for the null hypothesis that the spectral measure does not change over time. The finite sample performance of these tests is investigated in Monte Carlo simulations.
翻译:我们分析独立、不一定相同分布的多变性经常变化的随机矢量的极端价值依赖性。 更具体地说, 我们提议在某个时间点对当地光度测量进行估计, 并且对长期整合的光度测量进行估计。 这些光度测算器的单一无症状常态在适当的非对称平滑性和规律性假设下得到证明。 然后, 我们用综合光度测量的流程趋同来设计一致的测试, 以纠正光度测量不会随时间变化的无效假设。 这些测试的有限样本性能在蒙特卡洛模拟中进行了调查。