[Context]: Companies are increasingly recognizing the importance of automating Requirements Engineering (RE) tasks due to their resource-intensive nature. The advent of GenAI has made these tasks more amenable to automation, thanks to its ability to understand and interpret context effectively. [Problem]: However, in the context of GenAI, prompt engineering is a critical factor for success. Despite this, we currently lack tools and methods to systematically assess and determine the most effective prompt patterns to employ for a particular RE task. [Method]: Two tasks related to requirements, specifically requirement classification and tracing, were automated using the GPT-3.5 turbo API. The performance evaluation involved assessing various prompts created using 5 prompt patterns and implemented programmatically to perform the selected RE tasks, focusing on metrics such as precision, recall, accuracy, and F-Score. [Results]: This paper evaluates the effectiveness of the 5 prompt patterns' ability to make GPT-3.5 turbo perform the selected RE tasks and offers recommendations on which prompt pattern to use for a specific RE task. Additionally, it also provides an evaluation framework as a reference for researchers and practitioners who want to evaluate different prompt patterns for different RE tasks.
翻译:暂无翻译