String representation Learning (SRL) is an important task in the field of Natural Language Processing, but it remains under-explored. The goal of SRL is to learn dense and low-dimensional vectors (or embeddings) for encoding character sequences. The learned representation from this task can be used in many downstream application tasks such as string similarity matching or lexical normalization. In this paper, we propose a new method for to train a SRL model by only using synthetic data. Our approach makes use of Contrastive Learning in order to maximize similarity between related strings while minimizing it for unrelated strings. We demonstrate the effectiveness of our approach by evaluating the learned representation on the task of string similarity matching. Codes, data and pretrained models will be made publicly available.


翻译:字符串代表学习(SRL)是自然语言处理领域的一项重要任务,但仍未得到充分探讨。SRL的目标是学习密集和低维矢量(或嵌入)的编码字符序列。从这一任务中学到的表述方法可用于许多下游应用任务,如字符串相似匹配或法例正常化。在本文中,我们提出了仅使用合成数据来培训SRL模式的新方法。我们的方法是利用差异学习来尽量扩大相关字符串之间的相似性,同时将相关字符串的相似性减至最小。我们通过评估在字符串相似匹配任务上学到的表述方法,展示了我们的方法的有效性。代码、数据和预先培训的模式将公布于众。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员