We consider the nonparametric regression and the classification problems for $\psi$-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association, $\ldots$. A penalized estimation method for sparse deep neural networks is performed. In both nonparametric regression and binary classification problems, we establish oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators. Convergence rates of the excess risk of these estimators are also derived. The simulation results displayed show that, the proposed estimators overall work well than the non penalized estimators.
翻译:我们考虑的是非对称回归和对疲软依赖性工艺的分类问题。这种薄弱的依赖性结构比混合、关联、美元等条件更为普遍。对稀薄的深神经网络进行了一种受惩罚的估计方法。在非对称回归和二元分类问题上,我们为分散依赖性深神经网络估计员的过度风险建立了甲骨文不平等。还得出了这些估计员的过度风险的趋同率。模拟结果表明,拟议的估计员的总体工作比非受惩罚估计员的工作要好。</s>