Let $X_1,\ldots,X_n$ be a random sample from the Gamma distribution with density $f(x)=\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}/\Gamma(\alpha)$, $x>0$, where both $\alpha>0$ (the shape parameter) and $\lambda>0$ (the reciprocal scale parameter) are unknown. The main result shows that the uniformly minimum variance unbiased estimator (UMVUE) of the shape parameter, $\alpha$, exists if and only if $n\geq 4$; moreover, it has finite variance if and only if $n\geq 6$. More precisely, the form of the UMVUE is given for all parametric functions $\alpha$, $\lambda$, $1/\alpha$ and $1/\lambda$. Furthermore, a highly efficient estimating procedure for the two-parameter Beta distribution is also given. This is based on a Stein-type covariance identity for the Beta distribution, followed by an application of the theory of $U$-statistics and the delta-method. MSC: Primary 62F10; 62F12; Secondary 62E15. Key words and phrases: unbiased estimation; Gamma distribution; Beta distribution; Ye-Chen-type closed-form estimators; asymptotic efficiency; $U$-statistics; Stein-type covariance identity; delta-method.


翻译:X_1,\ldots,X_n美元是来自Gamma分布的随机样本,其密度为$f(x)\\lambda ⁇ alpha}xalpha-1}e\\\lambda x}/\Gamma(\alpha)$,$>0美元,其中所有的参数都未知(形状参数)和$\lambda>0美元(对等比例参数)。主要结果显示,形状参数的统一最小差异无偏差估计值(UMVUE)存在美元,如果而且只有美元(美元),则只有美元(美元)才存在;此外,如果只有美元(美元)和(美元)xalbalpha}(albda)x-alpha),则有一定的差异。 更准确地说, UMVUE的形式是用于所有参数$(形状参数) $(形状参数) 0美元、 美元、 lambda 美元、 $/ 美元和 lambda 美元。 此外,对两个参数分布的估算程序也非常高效。 这是基于 Ste- typeal- yal- yal- yal- deal- dealaltyaltyal- deal- distration tyal- deal- distrational- deal- distrational- deal- diversalm dition; dition; ditional- dition; ditional- ditional- dition ditional- ditionalationalational- devition; dition; dition; ditional- dition divitional- divitional- divition; a aut- divical- divical- dition; dition; dition; exal- ditional- ditional- deviewdal- dition; ditional- dition- dition- dition- devical- ex.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月10日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
0+阅读 · 2022年7月6日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员