An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.
翻译:暂无翻译