The paper proposes a novel architecture for explainable AI based on semantic technologies and AI. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The provided explanations combine concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The knowledge graph provides concepts that convey feature information at a higher abstraction level. By using them, explanations do not expose sensitive details regarding the demand forecasting models. The explanations also emphasize actionable dimensions where suitable. We link domain knowledge, forecasted values, and forecast explanations in a Knowledge Graph. The ontology and dataset we developed for this use case are publicly available for further research.


翻译:本文提出了基于语义技术和AI的可解释的AI的新结构。我们根据真实世界案例研究来调整需求预测领域的结构,并验证它。所提供的解释结合了描述特定预测、相关媒体事件相关特征的概念和与外部相关数据集有关的元数据的概念。知识图提供了在更高抽象水平上传递特征信息的概念。通过使用这些概念,解释并不暴露需求预测模型的敏感细节。解释还强调了适当时可操作的层面。我们在知识图中将域知识、预测值和预测解释联系起来。我们为这一使用案例开发的目录和数据集可供公众查阅,供进一步研究。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月17日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AAAI 2020 最新“可解释人工智能 XAI”教程
学术头条
5+阅读 · 2020年2月11日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
AAAI 2020 最新“可解释人工智能 XAI”教程
学术头条
5+阅读 · 2020年2月11日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员