The paper proposes a novel architecture for explainable AI based on semantic technologies and AI. We tailor the architecture for the domain of demand forecasting and validate it on a real-world case study. The provided explanations combine concepts describing features relevant to a particular forecast, related media events, and metadata regarding external datasets of interest. The knowledge graph provides concepts that convey feature information at a higher abstraction level. By using them, explanations do not expose sensitive details regarding the demand forecasting models. The explanations also emphasize actionable dimensions where suitable. We link domain knowledge, forecasted values, and forecast explanations in a Knowledge Graph. The ontology and dataset we developed for this use case are publicly available for further research.
翻译:本文提出了基于语义技术和AI的可解释的AI的新结构。我们根据真实世界案例研究来调整需求预测领域的结构,并验证它。所提供的解释结合了描述特定预测、相关媒体事件相关特征的概念和与外部相关数据集有关的元数据的概念。知识图提供了在更高抽象水平上传递特征信息的概念。通过使用这些概念,解释并不暴露需求预测模型的敏感细节。解释还强调了适当时可操作的层面。我们在知识图中将域知识、预测值和预测解释联系起来。我们为这一使用案例开发的目录和数据集可供公众查阅,供进一步研究。