Traffic forecasting problem remains a challenging task in the intelligent transportation system due to its spatio-temporal complexity. Although temporal dependency has been well studied and discussed, spatial dependency is relatively less explored due to its large variations, especially in the urban environment. In this study, a novel graph convolutional network model, Multi-Weight Traffic Graph Convolutional (MW-TGC) network, is proposed and applied to two urban networks with contrasting geometric constraints. The model conducts graph convolution operations on speed data with multi-weighted adjacency matrices to combine the features, including speed limit, distance, and angle. The spatially isolated dimension reduction operation is conducted on the combined features to learn the dependencies among the features and reduce the size of the output to a computationally feasible level. The output of multi-weight graph convolution is applied to the sequence-to-sequence model with Long Short-Term Memory units to learn temporal dependencies. When applied to two urban sites, urban-core and urban-mix, MW-TGC network not only outperformed the comparative models in both sites but also reduced variance in the heterogeneous urban-mix network. We conclude that MW-TGC network can provide a robust traffic forecasting performance across the variations in spatial complexity, which can be a strong advantage in urban traffic forecasting.


翻译:尽管对时间依赖性进行了认真的研究和讨论,但空间依赖性由于变化很大,特别是在城市环境中,探索范围依赖性相对较少。在本研究中,提出了一个新的图形革命网络模型,即多重交通图变(MW-TGC)网络,并应用于两个具有不同几何限制的城市网络。模型对速度数据进行了图形变动操作,并配有多重加权的相邻矩阵,以结合两个地点的特征,包括速度限制、距离和角度。空间孤立的尺寸缩小操作以综合功能进行,以了解这些特征之间的依赖性,并将产出的大小降低到可计算的水平。多重图变的输出应用到具有长期短期内存装置的序列至序列模型,以了解时间依赖性。当应用两个城市地点,即城市核心和城市混合,MW-TGC网络时,不仅超越了两个地点的比较模型,而且降低了城市网络间流量的差异。我们得出的结论是,城市网络间流量变化的强劲的预测性能是城市网络。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
6+阅读 · 2019年4月8日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
相关资讯
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员