In spite of the great progress in human motion prediction, it is still a challenging task to predict those aperiodic and complicated motions. We believe that to capture the correlations among human body components is the key to understand the human motion. In this paper, we propose a novel multiscale graph convolution network (MGCN) to address this problem. Firstly, we design an adaptive multiscale interactional encoding module (MIEM) which is composed of two sub modules: scale transformation module and scale interaction module to learn the human body correlations. Secondly, we apply a coarse-to-fine decoding strategy to decode the motions sequentially. We evaluate our approach on two standard benchmark datasets for human motion prediction: Human3.6M and CMU motion capture dataset. The experiments show that the proposed approach achieves the state-of-the-art performance for both short-term and long-term prediction especially in those complicated action category.
翻译:尽管在人类运动预测方面取得了巨大进展,但预测这些周期性和复杂动作仍是一项艰巨的任务。我们认为,捕捉人体各组成部分之间的相互关系是理解人类运动的关键。在本文件中,我们提议建立一个新的多尺度图变网络(MGCN)来解决这一问题。首先,我们设计了一个适应性多尺度互动编码模块(MIEM),由两个子模块组成:规模变换模块和规模互动模块,以学习人体相关性。第二,我们采用粗略到细微的解码战略来按顺序解码运动。我们评估了我们关于人类运动预测的两个标准基准数据集的方法:人类运动3.6M和CMU运动抓取数据集。实验表明,拟议的方法在短期和长期预测中都取得了最先进的性能,特别是在这些复杂的行动类别中。