Shamir and Spencer proved in the 1980s that the chromatic number of the binomial random graph G(n,p) is concentrated in an interval of length at most \omega\sqrt{n}, and in the 1990s Alon showed that an interval of length \omega\sqrt{n}/\log n suffices for constant edge-probabilities p \in (0,1). We prove a similar logarithmic improvement of the Shamir-Spencer concentration results for the sparse case p=p(n) \to 0, and uncover a surprising concentration `jump' of the chromatic number in the very dense case p=p(n) \to 1.
翻译:Shamir和Spencer在1980年代证明,二流随机图G(n,p)的染色体数在最多为 \ omega\ sqrt{n} 的时间间隔中集中在一个长度的间隔内,而在1990年代Alon 显示,一个长度的间隔内,p= omega\ sqrt{n}/log n 足以得出恒定边缘概率 p\ in (0,1) 。 我们证明,对于稀疏的p= p\\ to 0 案例,Shamir-Spentr 浓度结果的对数也有类似的对数改进,并发现了非常稠密的p= p\to 1 中染色体数的惊人浓度“跳跃”。