Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time, which is a realistic but challenging problem. In contrast to methods assuming an identical model for different domains, Mixture of Experts (MoE) exploits multiple domain-specific networks for leveraging complementary information between domains, obtaining impressive results. However, prior MoE-based DG ReID methods suffer from a large model size with the increase of the number of source domains, and most of them overlook the exploitation of domain-invariant characteristics. To handle the two issues above, this paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID. To avoid the large model size, experts in META do not add a branch network for each source domain but share all the parameters except for the batch normalization layers. Besides multiple experts, META leverages Instance Normalization (IN) and introduces it into a global branch to pursue invariant features across domains. Meanwhile, META considers the relevance of an unseen target sample and source domains via normalization statistics and develops an aggregation network to adaptively integrate multiple experts for mimicking unseen target domain. Benefiting from a proposed consistency loss and an episodic training algorithm, we can expect META to mimic embedding for a truly unseen target domain. Extensive experiments verify that META surpasses state-of-the-art DG ReID methods by a large margin.
翻译:(DG) 个人再识别(ReID) 的目的是在培训时间测试各种看不见领域,而没有访问目标域数据,这是一个现实但具有挑战性的问题。与对不同领域采用相同模式的方法相比,专家混合(MOE)利用多个特定域网络来利用不同领域之间的互补信息,取得了令人印象深刻的结果。然而,以前以教育部为基础的DG ReID方法由于源域数的增加而具有很大的模型规模,而且大多数都忽略了对域内差异特性的利用。为了处理上述两个问题,本文件为DG ReID提出了一种新办法,称为通过OThers'聚合(META)进行模拟嵌入。为避免大型模型规模,META的专家没有为每个来源领域增加分支网络,而是分享所有参数,但批次正常化层除外。除了多位专家之外,META还利用了标准正常化(IN) 并将其引入一个全球分支,以追求不同领域的异域内特性。同时,META认为通过正统域域域域域域域域域域域域域域缩缩缩缩缩缩图(IM) 将一个目标域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域