This paper presents the first systematic study on the fundamental problem of seeking optimal cell average decomposition (OCAD), which arises from constructing efficient high-order bound-preserving (BP) numerical methods within Zhang--Shu framework. Since proposed in 2010, Zhang--Shu framework has attracted extensive attention and been applied to developing many high-order BP discontinuous Galerkin and finite volume schemes for various hyperbolic equations. An essential ingredient in the framework is the decomposition of the cell averages of the numerical solution into a convex combination of the solution values at certain quadrature points. The classic CAD originally proposed by Zhang and Shu has been widely used in the past decade. However, the feasible CADs are not unique, and different CAD would affect the theoretical BP CFL condition and thus the computational costs. Zhang and Shu only checked, for the 1D $\mathbb P^2$ and $\mathbb P^3$ spaces, that their classic CAD based on the Gauss--Lobatto quadrature is optimal in the sense of achieving the mildest BP CFL conditions. In this paper, we establish the general theory for studying the OCAD problem on Cartesian meshes in 1D and 2D. We rigorously prove that the classic CAD is optimal for general 1D $\mathbb P^k$ spaces and general 2D $\mathbb Q^k$ spaces of arbitrary $k$. For the widely used 2D $\mathbb P^k$ spaces, the classic CAD is not optimal, and we establish the general approach to find out the genuine OCAD and propose a more practical quasi-optimal CAD, both of which provide much milder BP CFL conditions than the classic CAD. As a result, our OCAD and quasi-optimal CAD notably improve the efficiency of high-order BP schemes for a large class of hyperbolic or convection-dominated equations, at little cost of only a slight and local modification to the implementation code.


翻译:本文展示了第一次系统化研究,探讨在张- 舒框架内构建高效高阶约束保存(BP)数字方法(BP)后产生的最佳细胞平均分解(OCAD)这一根本问题。自2010年提出以来,张- 舒框架吸引了广泛的关注,并被用于为各种双曲方程式开发许多高阶 BP 间断 Galerkin 和有限体积方案。框架的一个基本成分是将数字解决方案的单元格平流平均值分解成在某些方形点的解决方案值的混和。张和舒最初提出的经典CAAD 。然而,可行的CAD并非独一无二,不同的CAD会影响理论性BP CFL条件,从而影响计算成本。张和舒只是检查了1D $\ mathb P% 2 和 美元平流方程空间的纯基平流平价解决方案,它们根据高压平面平面方块平面方块平面平面平面平面的CAD, 最优化的CAD 和我们平面平面的CAD 。

0
下载
关闭预览

相关内容

《计算机辅助设计》是一份领先的国际期刊,为学术界和工业界提供有关计算机应用于设计的研究和发展的重要论文。计算机辅助设计邀请论文报告新的研究以及新颖或特别重要的应用,在广泛的主题中,跨越所有阶段的设计过程,从概念创造到制造超越。 官网地址:http://dblp.uni-trier.de/db/journals/cad/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员