Contextual ranking models have delivered impressive performance improvements over classical models in the document ranking task. However, these highly over-parameterized models tend to be data-hungry and require large amounts of data even for fine tuning. This paper proposes a simple yet effective method to improve ranking performance on smaller datasets using supervised contrastive learning for the document ranking problem. We perform data augmentation by creating training data using parts of the relevant documents in the query-document pairs. We then use a supervised contrastive learning objective to learn an effective ranking model from the augmented dataset. Our experiments on subsets of the TREC-DL dataset show that, although data augmentation leads to an increasing the training data sizes, it does not necessarily improve the performance using existing pointwise or pairwise training objectives. However, our proposed supervised contrastive loss objective leads to performance improvements over the standard non-augmented setting showcasing the utility of data augmentation using contrastive losses. Finally, we show the real benefit of using supervised contrastive learning objectives by showing marked improvements in smaller ranking datasets relating to news (Robust04), finance (FiQA), and scientific fact checking (SciFact).


翻译:在文件排序任务中,背景排位模型比古典模型取得了令人印象深刻的业绩改进;然而,这些高度参数化模型往往是数据饥饿,甚至需要大量数据进行微调。本文件提出一个简单而有效的方法,利用对文件排序问题的监督对比性学习来改进较小数据集的排位绩效。我们通过使用查询文件对配中相关文档的部分内容来创建培训数据来增强数据。我们随后使用监督对比性学习目标从增强的数据集中学习一个有效的排位模型。我们在TREC-DL数据集子集上进行的实验表明,尽管数据增强导致培训数据规模的扩大,但不一定能够利用现有的点对齐或对齐的培训目标改进数据组的排位性绩效。然而,我们提出的监督性对比性损失目标导致业绩的改进,而标准非强化性设定则显示数据增强的效用,使用对比性损失。最后,我们通过显示与新闻(Robust04)、金融(FIQA)和科学事实检查(Sciact)有关的较小排位数据集的显著改进,显示了使用监督性对比性学习目标的真正好处。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Contrastive Audio-Language Learning for Music
Arxiv
0+阅读 · 2022年8月25日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员