This paper studies the estimation of large precision matrices and Cholesky factors obtained by observing a Gaussian process at many locations. Under general assumptions on the precision and the observations, we show that the sample complexity scales poly-logarithmically with the size of the precision matrix and its Cholesky factor. The key challenge in these estimation tasks is the polynomial growth of the condition number of the target matrices with their size. For precision estimation, our theory hinges on an intuitive local regression technique on the lattice graph which exploits the approximate sparsity implied by the screening effect. For Cholesky factor estimation, we leverage a block-Cholesky decomposition recently used to establish complexity bounds for sparse Cholesky factorization.
翻译:暂无翻译